Nonsymmetric multigrid preconditioning for conjugate gradient methods

نویسندگان

  • Henricus Bouwmeester
  • Andrew Dougherty
  • Andrew V. Knyazev
چکیده

We numerically analyze the possibility of turning off post-smoothing (relaxation) in geometric multigrid used as a preconditioner in conjugate gradient linear and eigenvalue solvers for the 3D Laplacian. The geometric Semicoarsening Multigrid (SMG) method is provided by the hypre parallel software package. We solve linear systems using two variants (standard and flexible) of the preconditioned conjugate gradient (PCG) and preconditioned steepest descent (PSD) methods. The eigenvalue problems are solved using the locally optimal block preconditioned conjugate gradient (LOBPCG) method available in hypre through BLOPEX software. We observe that turning off the post smoothing in SMG dramatically slows down the standard PCG-SMG. For the flexible PCG and LOBPCG, our numerical results show that post smoothing can be avoided, resulting in overall acceleration, due to the high costs of smoothing and relatively insignificant decrease in convergence speed. We numerically demonstrate for linear systems that PSD-SMG converges nearly identical to flexible PCG-SMG if SMG post smoothing is off. A theoretical justification is provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superlinearly convergent PCG algorithms for some nonsymmetric elliptic systems

The conjugate gradient method is a widespread way of solving nonsymmetric linear algebraic systems, in particular for large systems arising from discretized elliptic problems. A celebrated property of the CGM is superlinear convergence, see the book [2] where a comprehensive summary is given on the convergence of the CGM. For discretized elliptic problems, the CGM is mostly used with suitable p...

متن کامل

Nonsymmetric Preconditioning for Conjugate Gradient and Steepest Descent Methods1

We numerically analyze the possibility of turning off postsmoothing (relaxation) in geometric multigrid when used as a preconditioner in conjugate gradient linear and eigenvalue solvers for the 3D Laplacian. The geometric Semicoarsening Multigrid (SMG) method is provided by the hypre parallel software package. We solve linear systems using two variants (standard and flexible) of the preconditio...

متن کامل

Parallel Multigrid Preconditioning of the Conjugate Gradient Method for Systems of Subsurface Hydrology

Parallel preconditioners are considered for improving the convergence rate of the conjugate gradient method for solving sparse symmetric positive deenite systems generated by nite element models of subsurface ow. The diiculties of adapting eeective sequential preconditioners to the parallel environment are illustrated by our treatment of incomplete Cholesky preconditioning. These diiculties are...

متن کامل

University of Colorado at Denver and Health Sciences Center Preconditioned Eigensolver LOBPCG in hypre and PETSc

We present preliminary results of an ongoing project to develop codes of the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method for symmetric eigenvalue problems for hypre and PETSc software packages. hypre and PETSc provide high quality domain decomposition and multigrid preconditioning for parallel computers. Our LOBPCG implementation for hypre is publicly available in hy...

متن کامل

Preconditioning Techniques for the Bidomain Equations

In this work we discuss parallel preconditioning techniques for the bidomain equations, a non-linear system of partial differential equations which is widely used for describing electrical activity in cardiac tissue. We focus on the solution of the linear system associated with the elliptic part of the bidomain model, since it dominates computation, with the preconditioned conjugate gradient me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1212.6680  شماره 

صفحات  -

تاریخ انتشار 2012